Exercise 10

A particle moves with position function

$$
s=t^{4}-4 t^{3}-20 t^{2}+20 t \quad t \geq 0
$$

(a) At what time does the particle have a velocity of $20 \mathrm{~m} / \mathrm{s}$?
(b) At what time is the acceleration 0 ? What is the significance of this value of t ?

Solution

Part (a)

To determine the velocity, take the derivative of the position function.

$$
\begin{aligned}
v(t) & =\frac{d s}{d t} \\
& =\frac{d}{d t}\left(t^{4}-4 t^{3}-20 t^{2}+20 t\right) \\
& =4 t^{3}-12 t^{2}-40 t+20
\end{aligned}
$$

To find when the particle has a velocity of $20 \mathrm{~m} / \mathrm{s}$, set $v(t)=20$ and solve the equation for t.

$$
\begin{gathered}
4 t^{3}-12 t^{2}-40 t+20=20 \\
4 t^{3}-12 t^{2}-40 t=0 \\
4 t\left(t^{2}-3 t-10\right)=0 \\
4 t(t-5)(t+2)=0 \\
t=\{-2,0,5\}
\end{gathered}
$$

Therefore, the particle has a velocity of $20 \mathrm{~m} / \mathrm{s}$ when $t=0$ or $t=5$.

Part (b)

Take the derivative of the velocity to get the acceleration function.

$$
\begin{aligned}
a(t) & =\frac{d v}{d t} \\
& =\frac{d}{d t}\left(4 t^{3}-12 t^{2}-40 t+20\right) \\
& =12 t^{2}-24 t-40
\end{aligned}
$$

Set $a(t)=0$ and solve for t to find when the acceleration is zero.

$$
\begin{gathered}
a(t)=0 \\
12 t^{2}-24 t-40=0 \\
4\left(3 t^{2}-6 t-10\right)=0 \\
3 t^{2}-6 t-10=0 \\
t=\frac{6 \pm \sqrt{6^{2}-4(3)(-10)}}{2(3)} \\
t=\left\{\frac{3-\sqrt{39}}{3}, \frac{3+\sqrt{39}}{3}\right\} \\
t \approx\{-1.08167,3.08167\}
\end{gathered}
$$

Since $t \geq 0$, choose the positive time.

$$
t \approx 3.08167 \mathrm{~s}
$$

At this time the velocity is not changing; that is, the tangent line to the velocity curve is flat.

